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An analysis of advective diffusion in branching channels 

By P. F. HAMBLIN 
National Water Research Institute, Burlington, Canada L7R 4A6t 

(Received 7 May 1979 and in revised form 6 May 1979) 

Solutions to the steady advection-diffusion equation in a branching channel are 
obtained for both uniform and spatially varying flow fields and for two channel 
geometries. An interesting feature of the solutions is that anisotropy of the dispersion 
coefficients in the direction of the streamlines may be accounted for. The analysis 
reveals that mixing is confined to a distance, b2U/?'r2KN, downstream of the junction 
in the advection-dominated case and a distance, K,/ U ,  upstream in the diffusion- 
dominated situation, Ks and KN being the diffusivities along and across theflow 
respectively, U the characteristic velocity of the flow, and b the breadth of channel 
downstream of the junction. 

1. Introduction 
The field of concentration arising from the mixing of two fluids of differing flow and 

concentrations a t  a junction of two channels is of interest in a variety of applications. 
Sayre (1973) in his consideration of the problem of the mixing of two rivers assumed 
that the concentration field was completely unmixed at the point of confluence. On 
the other hand, in a treatment of dispersion in a network of tubes, Ultman & Blatrnan 
(1977) assumed complete lateral mixing of the tracer across each of the channels in a 
branching system. It is the purpose of the present work to show under what circum- 
stances such assumptions are valid. Also it will be shown that an exact solution for the 
concentration field can be constructed and how, under some modifications, it can be 
applied to more general conditions of flow and geometry. 

2. The diffusion equation model 
The method of study that will be adopted is the diffusion equation approach for the 

reasons stated by Hunt & Mulhearn (1973). The advantage of this approach over the 
statistical analysis is that the effects of the boundary condition of no normal material 
flux is more readily calculable than by statistical methods and that effects of the 
straining of the flow by the convergence or divergence of the streamlines may be 
accounted for. Finally, since it is assumed that the concentration is either uniform 
or fairly well mixed upstream, errors introduced by the neglect of the effect of small- 
scale influences on the diffusion process can be neglected. The two-dimensional 
diffusion equation with a constant molecular or eddy diffusivity of Ks in the direction 
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FIQURE 1. Configuration for flow in two channels of widths 
c and 26-c, which unite at x = 0, y = c. 

of the fluid flow and of KN in the direction normal to the streamlines may be written 
as 

where U is the mean velocity, and x is taken as parallel to the flow and y normal to the 
flow. 

Suppose that flow is confined to two parallel channels which unite a t  x = 0 (see 
figure 1 )  and that the speed of the flow, U ,  in each of the separate channels is equal. 

The boundary conditions on the channel walls are assumed to be aC/ay = 0, 
y = 0,2b,  -00 < x < 00, and aC/ay = 0, y = c,  -00 < x < 0. The quantities C and 
aC/ay are continuous on y = c,  0 < x < 00. 

The concentrations at x+-00 are assumed to be C,, in 0 < y < c and C,  in 
c < y < 2b. 

3. Analysis 
3.1. Exact 

The num'ber of variables in the solution may be reduced by introducing the horizontal 
length scales 

L, = K s / U ,  L, = ( K s K N ) i / u ;  
then X' = x /Lz ,  b' = b/L,, 

y' = y/L,, c' = c/L,. 
Introducing the dimensionless variables x', y' and dropping the primes, the diffusion 

equation may be written as 
ac a w  a2c 

ax ax% a g e  
-=-+- 

In  region I, we define C'(x, y) such that C' = 0 as x+ - 00 and similarly, in region 
11, C'(x, y) = 0 8s x+ - 00. Then 

C' = C-C, ,  c < y < 2b, (3.1) 

C' = c-c,,, 0 < y < c.  (3.2) 

Thus C' will be discontinuous along y = c for -00 < x < 00 but we require that 
acl/ay be continuous on y = c for 0 < x < 00. 
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A simplification is obtained through the introduction of the variable Y, 

Then Y satisfies 
Y = C'(x, y) exp ( - 82). 

When a Fourier transform is applied to (3.4), 

and when the condition that a@/ay = 0, y = 0 , 2 b  is employed we have 

@(y) = A(a) cosh yy for 0 < y < c, 
= B(a) cosh y(2b - y) for c G y G 2b, 

where y = (a2 + &)a. The functions A and B may be determined from the Wiener-Hopf 
procedure, Following this technique we introduce the Fourier transforms 

@(a, Y) = @+(a, Y) + @-(a, Y), 
where 

and 

Then on y = c we have that @*(c) are discontinuous, (a@Jay) (c 0) = 0 and that 
a@+/ay is continuous. In  addition, 

@+(c + 0) - @+(c - 0) = - eiHa+ti)dx c;;;)P,/oa 

On y = c we may write 

@+(c + 0) + @-(C + 0 )  = B(a) coshy(2b - c) ,  

@+(c - 0)  + @-(c - 0 )  = A(a)  COshYC, 

(3.6) 

(3.7) 

(c) = y A ( a )  sinh yc 
au u 

= - y B ( a )  sinh y(2b - c). (3.8) 
We define D- = @-(c + 0)  - @-(c - 0). 

from ( 3 4 ,  
By subtracting (3.7) from (3.6), eliminating B and A from (3.8) and substituting 

(3.9) 
sinh y2b (C,  - QII) i .+ D- = a@+(c) 

&J ysinhycsinhy(2b-c) (2n)t(a+ii)' 

Define 
C( 2b - C )  sinh y2b 

K(a) = = K+@) K-(a), 2b sinh YC sinh y (  2b - C )  

where IK+I and 19-1 N la14 as a+a, in appropriate half-planes. The factorization 
of K(a)  is given in the appendix. 
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The cruciaI step is the rearrangement of (3.9) SO 

containing the inversion path. Rewriting (3.9) as 

(a -# i )D-  - (CI-CII)i (a-+i  - + 
K J a )  (2n)' (a + *i) K ( a )  K-( - *i) 

that there is a common domain 

2b a@+@) K+(a) + CI - CII ----- - 
c ( 2 b - C )  3~ (a++i) ( 2 7 ~ ) 4 ( ~ ~ + 4 i ) K - ( - @ ) '  

By the application of the Wiener-Hopf technique each side of the above equation 
is identically zero, see Noble (1958). 

a@+(c) c(2b - C) (CI - G I )  
We now have 

-=- 
2b ( 2 ~ ) f  K+(a) K-( - +i) 

Thus for -a c x < 0, 
c(2b - c )  (CI - CId 

2b (2n)i yK+( a) K+( ai) sinh yc 
A(a) = 

and, for 0 < x < 00 and from the definition of K(a) .  

(CI- C1,)K-(a)sinhy(2b-c) 
(2n)BK+(@) y2sinhy2b ' A(a) = 

(C,  - CII) K&) sinh yc 
(277)' K+( Si) y2 sinh y2b ' 

B(a) = - 

The distribution of Y at any point is given by 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

B(a) coshy(2b -y) e-iaxda (c 6 y < 2b).  (3.15) 

These integrals are readily determined by contour integration since the only 

Finally, we have for the mean field of concentration and after applying (3.1)' (3.2), 
singularities are simple poles. 

(3.3), for -00 < 2 < 0 and 0 < y < c, 

where 

] +CI, (3.16b) 
( - l)n cos [nn( 2b -y)/(2b -c)] exp ((yn + 4) z) 

3/n K+('3/n) K+(ii) + z  
n = l  

where 
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( - l)nK+(iy,) sin (n(2b - c )  7r/2b) 

nVn K+(iii) C(X, Y )  = GIN, + (CI - CIA I: 
n = l  

x cos - exp((+-yn)x); ( 3 . 1 6 ~ )  rGY) 
and in c < y < 2b, 

( -  l)nK+(iy,)sin (cnnl2b) 

nmYn K+(Qi) 
c(x,Y) = cINJ?-(cI-cII) c 

n= 1 

nn 
2b x cos- (2b - y )  exp ((9 - 7,) x), (3.16d) 

and 

3.2. Asymptotic solution for large channel width 

In  either the advection-dominated case or in the case oflarge channel width we may 
consider the limit as b+cc of, say, integral (3.14) and (3.10) 

(CI - CII) a+& c(2b - c )  exp [( - yc + y(y l  + c )  - iax + 9 ) ]  
c(x7y)  = 277 - a++i 2by[c(2b - c) /b])  (+ - iol)+[c(2b - c)/b]4 da: + G I ,  

yl = y - c ;  

s 
where 

the approximation for K+(a) (appendix), and the decaying exponential form for 
cosh y y  have been used. On writing a1 = a: + +i, 

(3.17 a )  

in yl < 0 where 7 = Im (x- iyl)+. 
Similarly for y l  2 0 the asymptotic form reduces to 

C(x, Y )  = S(CI+ cII) + 9(c1 - cII) erf(r), (3.17 b )  

This relatively simple form of the solution may have practical application in the 
where 7 = Im (x + iy l ) ) .  

vicinity of the confluence of the two channels. 

4. Non-uniform velocity fields 
Hunt & Mulhearn (1973) have pointed out that for diffusion problems involving 

potential flows the diffusion equation can be solved readily in complicated flow fields 
by the transformation of Boussinesq. 
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In  the more general case of anisotropic diffusion and where the principal diffusivity 
is parallel to the streamlines the two-dimensional advection-diffusion equation for a 
spatially varying velocity field, 

ac ac a 
U(x,  y) - + V(x ,  y) - = - ax ay ax 

where K,, = K ,  e + KN sin2 e, 
K,, = (K,  - KN) sin 0 COB 6, 
K,, = K,  sin2 0 + KN cos2 0, 

may be transformed to (2.1) 

aC a2c a = Ks- + K N z  for K,  and KN constant, a@, ayP2 

provided 
a@ ay 

U ( x , y )  = - = - 
ax a y ,  

V(x,y) = - = -- 
ay ax. 
a 0  aY 

Here 8 is defined as the angle between the streamline and the x axis. 

4.1. Unequal flows 
In  the analysis of $ 3  it was assumed that the speed of the flow, U ,  in each of the 
separate channels is equal. We may relax this restriction by the use of theabove 
transformation. As an example for consideration the complex potential, @ + iY, in 
the region of the junction of two channels of flows U, and UII, but of equal widths, b ,  
is given by Churchill (1948), 

(1 + exp [ - 27r( - x1+ iyl)])+ - 1 
@(XI, yf) + iY(x1, yl) = 2(&+ iyl) + 

(4.1 1 
The co-ordinates d, yl are scaled by b and the complex potential by b(U, + UII). 

4.2. Non-zero junction angle 

The method of conformal mapping provides a means for calculating the flow dis- 
tribution in channels meeting a t  angles other than zero considered in $3. In  the 
extreme case of a junction angle of 180°, that is, of a straight channel of width b,  
with opposed flow in each end and discharging through a slit in the channel wall, the 
non-dimensional complex potential is 

ull * (x1 + iyl) 
UI + UII 

@(xl, yl) +iY(xl, yl) = log (exp [n(xl + iyl)] - 1) - - 

The spatially invariant term in this expression ensures that the potential is zero at the 
stagnation point. 

Conformal transformations for channels bent at arbitrary angles are given by Kober 
(1952, p. 156) which may be applied to junction angles other than those considered here. 
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FIGURE 2.  Distribution of concentration in channels of widths 0.4b and 1.6h. (a) L, = b ;  ( b )  
L,  = 0 - l b ;  ( c )  L, = lob; ( d )  L, = 0.01b where L, = K8/U = K N / U  and C, --f 1, C,, + O ,  x +- 03. 

5. Discussion 
Figure 2 gives plots of C(x,  y) computed from (3.16) for a range of non-dimensional 

length scales, Lx/b, and for K, equal to KN. When advective and diffusive effects are 
balanced (figure 2a) the mixing zone of length scale L, is equally distributed about 
the channel junction. In  the case where diffusive effects predominate over advective 
effects or L,/b $ 1 the spatially dependent terms in (3.16c, d)  are small and the 
first term in (3.16a, b )  i? larger than the second term. Therefore, the appropriate scale 
size for the upstream extent of the mixing zone is L,. On the other hand, when 
advection is much stronger than diffusion or Lx/b < 1 the first two terms in (3.16a, b )  
cancel one another while the coefficient of z in the argument of the exponential of the 
first term in the sum in (3.16c, d )  is approximately ( 7 ~ / 2 b ) ~ K ~ / U .  Thus, the mixing 
zone characteristically extends from the junction to a distance, ( 2 b / 7 ~ ) ~  U / K N ,  down- 
stream of the junction. The distribution of figure 2(d)  for very large advection is 
closely approximated by the asymptotic solution (3.17) in the region where the two 
flows meet. At a distance of several channel widths downstream the confining influence 
of the channel walls begins to be felt. Thus it is clear that the approximation, made by 
Sayre (1973), that the concentration at the junction of each of the two flows is un- 
altered from their upstream values is valid only in the advection-dominated case. 

Figure 3 presents an example of the extension of the method to non-uniform 
velocity fields. The streamlines plotted in figure 3(a)  and the associated velocity 
potential are mapped by the transformation (4.1) to a uniform field similar to that of 
figure (1) .  Equation (3.16) is then applied to the transformed flow field. The distribu- 
tion of figure 3 (b )  is qualitatively similar to that of figure 2 (a) ,  which suggests that 
differing flow velocities play a similar role to that of differing channel widths in 
determining the characteristics of the mixing zone. 
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FIUTJRE 3. (a) Streamlines in two channels of equal widths, b, and U,/U, = 4. (6 )  Associated 
distribution of concentration for Kb = KN = b( U, + U,). (c) Similarlyfor KB = 10KN = b( U, + Un). 
In (b)  and (c) C, + 1, C, 4 0  tw z + - co. 

In  a three-dimensional channel in which the flow is sheared in the vertical it is 
well known that the effect of the vertical shear is to augment the horizontal diffusion 
of the vertically averaged field of concentration. As an example of how the present 
theory may be applied to  the problem of horizontal turbulent dispersion in a channel 
we assume that the augmented diffusion or dispersion coefficient in the direction 
parallel to the streamline is one order of magnitude larger than the diffusivity in the 
normal direction. By comparison of the resulting distribution shown in figure 3(c) 
with the case of isotropic diffusion, figure 3 ( b ) ,  it  is concluded that the magnitude of 
the horizontal mixing zone is sensitive to lateral diffusion. 

Finally, the flow in two channels meeting at  the extreme junction angle of 180" 
is considered in figure 4 (a).  When advection is stronger than diffusion in both channels 
a frontal zone is found in the vicinity of the convergence of the two flows. The front 
is more pronounced on the side of the outflow. When advection is reduced the dis- 
tribution is more diffuse, particularly in the direction of the weaker flow, figure 4 ( b ) .  
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-8 -6 -4 -2 0 2 4 6 8 
FIaum 4. (a) Streamlines in a straight channel with the outflow at x = 0, y = 0 for U,/U, = 4. 
( b )  Associated distribution of concentration for K ,  = KN = b( U,+ U J .  (c) Similarly for 

K ,  = KN = O.lb(U,+U,). 
In  (b )  and (c) C, .+ 1 a s  2 + 03; C,, + O  &s 2 -+- 03. 

6.  Conclusion 
Exact) solutions of the steady advectiofi-diffusion equation for a branching channel 

have been constructed by using the Wiener-Hopf technique. The theory given here 
can be applied to more realistic problems that might arise in practice, namely more 
general channel geometry, spatially varying flow fields and shear-augmented dispersion. 

Of considerable interest is the problem of diffusion of a substance through a net- 
work of branching channels. In  the treatment of such hierarchical systems 
assumptions are often made that the concentration at the junction is either 
completely mixed or unmixed in the lateral direction. The present theory supports 
such assumptions providing the individual compartments of the network have lengths 
greater than the appropriate diffusion length scales, L,, or b2LzILi, for mixing to lateral 
uniformity. 
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Application of the present theory to a number of problems of practical interest in 
lakes, estuaries, and rivers is in progress. 

Appendix 
The theory of the decomposition of the function K(a)  in terms of an inhite-product 

expression is found in Noble (1958). Following this procedure K(a) may be written as 

where 

) K+(ia) = exp (: (2b In 2b - c In c - (2b - c) In (2b - c)) 

Since the K(a)  is an even function of a, K+(ia) = K-( - ia). In  computation of K+(ia) 
in the advection-dominated case, that is, b, c and 2b - c large, K+(ia) may be approxi- 
mated bv " 

~ ( 2 b - C )  K+(ia) N [ - b 

In  the diffusion-dominated range, that is b,  c, 2b - c small, the asymptotic value of 
K+(ia), for large a, may be estimated from gamma-function formulae. In  turn from 
Stirling's formula for the asymptotic form for the gamma function, 

for a+co. 
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